2,756 research outputs found

    Neuroplastic Changes Following Brain Ischemia and their Contribution to Stroke Recovery: Novel Approaches in Neurorehabilitation

    Get PDF
    Ischemic damage to the brain triggers substantial reorganization of spared areas and pathways, which is associated with limited, spontaneous restoration of function. A better understanding of this plastic remodeling is crucial to develop more effective strategies for stroke rehabilitation. In this review article, we discuss advances in the comprehension of post-stroke network reorganization in patients and animal models. We first focus on rodent studies that have shed light on the mechanisms underlying neuronal remodeling in the perilesional area and contralesional hemisphere after motor cortex infarcts. Analysis of electrophysiological data has demonstrated brain-wide alterations in functional connectivity in both hemispheres, well beyond the infarcted area. We then illustrate the potential use of non-invasive brain stimulation (NIBS) techniques to boost recovery. We finally discuss rehabilitative protocols based on robotic devices as a tool to promote endogenous plasticity and functional restoration

    Assessing the Relationships between Interdigital Geometry Quality and Inkjet Printing Parameters

    Get PDF
    Drop on demand (DoD) inkjet printing is a high precision, non-contact, and maskless additive manufacturing technique employed in producing high-precision micrometer-scaled geometries allowing free design manufacturing for flexible devices and printed electronics. A lot of studies exist regarding the ink droplet delivery from the nozzle to the substrate and the jet fluid dynamics, but the literature lacks systematic approaches dealing with the relationship between process parameters and geometrical outcome. This study investigates the influence of the main printing parameters (namely, the spacing between subsequent drops deposited on the substrate, the printing speed, and the nozzle temperature) on the accuracy of a representative geometry consisting of two interdigitated comb-shape electrodes. The study objective was achieved thanks to a proper experimental campaign developed according to Design of Experiments (DoE) methodology. The printing process performance was evaluated by suitable geometrical quantities extracted from the acquired images of the printed samples using a MATLAB algorithm. A drop spacing of 140 µm and 170 µm on the two main directions of the printing plane, with a nozzle temperature of 35◦C, resulted as the most appropriate parameter combination for printing the target geometry. No significant influence of the printing speed on the process outcomes was found, thus choosing the highest speed value within the investigated range can increase productivity

    Quantitative abilities in a reptile (Podarcis sicula)

    Get PDF
    The ability to identify the largest amount of prey available is fundamental for optimizing foraging behaviour in several species. To date, this cognitive skill has been observed in all vertebrate groups except reptiles. In this study we investigated the spontaneous ability of ruin lizards to select the larger amount of food items. In Experiment 1, lizards proved able to select the larger food item when presented with two alternatives differing in size (0.25, 0.50, 0.67 and 0.75 ratio). In Experiment 2 lizards presented with two groups of food items (1 versus 4, 2 versus 4, 2 versus 3 and 3 versus 4 items) were unable to select the larger group in any contrast. The lack of discrimination in the presence ofmultiple items represents an exception in numerical cognition studies, raising the question as to whether reptiles' quantitative abilities are different from those of other vertebrate groups

    Measurement of the neutron detection efficiency of a 80% absorber - 20% scintillating fibers calorimeter

    Full text link
    The neutron detection efficiency of a sampling calorimeter made of 1 mm diameter scintillating fibers embedded in a lead/bismuth structure has been measured at the neutron beam of the The Svedberg Laboratory at Uppsala. A significant enhancement of the detection efficiency with respect to a bulk organic scintillator detector with the same thickness is observed.Comment: 10 pages, 7 figure

    Measurement of neutron detection efficiency between 22 and 174 MeV using two different kinds of Pb-scintillating fiber sampling calorimeters

    Full text link
    We exposed a prototype of the lead-scintillating fiber KLOE calorimeter to neutron beam of 21, 46 and 174 MeV at The Svedberg Laboratory, Uppsala, to study its neutron detection efficiency. This has been found larger than what expected considering the scintillator thickness of the prototype. %To check our method, we measured also the neutron %detection efficiency of a 5 cm thick NE110 scintillator. We show preliminary measurement carried out with a different prototype with a larger lead/fiber ratio, which proves the relevance of passive material to neutron detection efficiency in this kind of calorimeters

    Determination of the Jet Energy Scale at the Collider Detector at Fermilab

    Full text link
    A precise determination of the energy scale of jets at the Collider Detector at Fermilab at the Tevatron ppˉp\bar{p} collider is described. Jets are used in many analyses to estimate the energies of partons resulting from the underlying physics process. Several correction factors are developed to estimate the original parton energy from the observed jet energy in the calorimeter. The jet energy response is compared between data and Monte Carlo simulation for various physics processes, and systematic uncertainties on the jet energy scale are determined. For jets with transverse momenta above 50 GeV the jet energy scale is determined with a 3% systematic uncertainty

    New experimental limit on the Pauli Exclusion Principle violation by electrons

    Get PDF
    The Pauli Exclusion Principle (PEP) is one of the basic principles of modern physics and, even if there are no compelling reasons to doubt its validity, it is still debated today because an intuitive, elementary explanation is still missing, and because of its unique stand among the basic symmetries of physics. The present paper reports a new limit on the probability that PEP is violated by electrons, in a search for a shifted Kα_\alpha line in copper: the presence of this line in the soft X-ray copper fluorescence would signal a transition to a ground state already occupied by 2 electrons. The obtained value, 1/2β2≤4.5×10−28{1/2} \beta^{2} \leq 4.5\times 10^{-28}, improves the existing limit by almost two orders of magnitude.Comment: submitted to Phys. Lett.
    • …
    corecore